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Moment Method Formulation for Beam Excitation of

Waveguide Slots
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Introduction

This paper describes a moment method formulation for calculating the pickup and
kicker impedances of a stochastic cooling waveguide structure. A schematic of the
waveguide pickup is shown in Figure 1.
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Figure 1. Schematic of a stochastic cooling waveguide pickup/kicker.

Slots carved in a waveguide wall will slow down the phase velocity of a wave in
the waveguide. The reduction in phase velocity is a function of the slot length, width, and
the spacing between slots. The coupling of the slots to the beam is proportional to the slot
length. When the reduced phase velocity of the waveguide matches the beam velocity, the
coupling of the slots will add constructively. In this slow-wave mode, the gain of the array
is proportional to the number of slots and the bandwidth of the array is inversely
proportional to the number of slots.

Finite element methods for are poorly suited for solving electromagnetic problems
with thin wall apertures. The thin wall causes the electromagnetic field pattern to vary
rapidly in the vicinity of the aperture. For finite elements, this would require a fine mesh
around the apertures resulting in very large matrices to invert. Also, finite elements yield
the solution for the electromagnetic field everywhere in the problem. To calculate pickup
and kicker impedances, the electromagnetic field has to be known only at the slots or
along the beam path.
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For these reasons, a moment method approach will be used for calculating the
pickup and kicker impedances.

Geometry of the Problem
The geometry of the problem is shown in Figures 2 and 3. Two regions (Regions I

& II) are separated by a conducting screens in the X-Z plane. These regions may have
different dielectric constants or backing plate configurations. The beam travels in the z
direction somewhere in Region I. The two regions are connected by a hole or aperture in
the screen. The purpose of the moment method program is to find the tangential electric
and magnetic fields in this aperture.
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Figure 2. Side view of a stochastic cooling waveguide pickup/kicker
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Figure 3. Head-on view of  stochastic cooling waveguide pickup/kicker
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Figure 4. Decomposition of an off-center beam into the sum and difference modes.
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Figure 5. Side-view of ½ of the pickup after symmetry decomposition
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Electric Boundary = difference mode
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Figure 6. Head-on view of ½ of the pickup after symmetry decomposition.

The problem can be divided into sum and difference modes as shown in Figure 4.
The sum and difference modes will be used for momentum and transverse cooling
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structures, respectively. For the sum mode, the magnetic field component parallel to the x-
z plane at the center of the structure is zero. The x-z plane at the center can then be
replaced with a magnetic conductor as shown in Figures 5 and 6. For the difference mode,
the electric field component parallel to the x-z plane at the center of the structure is zero.
The x-z plane at the center can then be replaced with an electric conductor.

Magnetic Current Sources

The moment method approach for this problem will be to solve for the tangential
magnetic field in the aperture. Because the tangential electric field is zero on the
conducting screen that separates the two regions, this approach is best formulated using
magnetic current sources instead of electric current sources. Since magnetic current
sources are an unfamiliar topic with most people, this section will describe the properties
of magnetic current sources.

Since magnetic charge has not been found to exist, a magnetic current is defined by
the Equivalence Principle. As shown in Fig 7a, a set of sources produces a field, E and H.
A imaginary boundary is now drawn around the sources. The Equivalence Principle states
that the same field, E and H, will exist outside the boundary if there is zero field and no
sources inside the boundary but the boundary is coated with equivalent surface currents as
shown in Figure 7b. These sources are:

  

r 
J s = ˆ n ×

r 
H 

r 
M s =

r 
E × ˆ n (1)

where:

( )ss rrJEjH
rrrrrr

−δ+ωε=×∇ (2)

and:

( )ss rrMHjE
rrrrrr

−δ+ωµ=×∇− (3)

The time dependence assumed is ejωt.

J s= n x H

E,H

n

M s= E x n

E,H

E,H

n

Sources

a. b.

Zero 
Field

Figure 7.

Since the fields are zero just inside the boundary we can place any material we
want inside the boundary and not effect the fields outside of the boundary. In Figure 8a,



4/15/98
3:45 PM

5

the boundary is replaced by an electric conductor (Etan = 0) which shorts out the electric
current Js. Likewise, in Figure 8b, the boundary is replaced by a magnetic conductor
(Htan = 0) which shorts out the magnetic current Ms.

J s= n x H

  

n

Ms= Ex n

E,H E,H

n

a. b.

Zero Field

Magnetic 
Conductor

Zero Field

Electric 
Conductor

Figure 8.

 Consider the case of Figure 3a. Equation 2 reduces to:

EjH
rrr

ω=×∇ (4)

From the Continuity equation between electric charge and electric current, if there is no
electric current, there is no electric charge. If there is zero electric charge, the divergence
of E is zero. When the divergence of E is zero, an electric vector potential can be defined
as:

F
1

E
rrr

×∇
ε

−= (5)

With the appropriate choice of gauge, Maxwell's equations can be combined into:

( )
µεω=κ

ε−=κ+∇
22

22 MF
rr

(6)

The magnetic field is given as:

( )( )FF
j

H 2
2

rrrrr
•∇∇+κ

κ

ω
−= (7)

Equation 6 can be solved by Green's function techniques where:

( ) ( ) ( )rrrrG22 ′−εδ−=′κ+∇
rrrr

(8)

and:

( ) ( ) ( ) vdrrGrMrF
v

′′′= ∫∫∫
rrrrrr

(9)

If the magnetic current is a surface current as given in Equation 3, then the magnetic field
is given as:
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( ) ( ) ( ) ( )( ) ( ) 












′′′•∇′∇+′′′κ

κ

ω
−= ∫∫∫∫

s
s

s
s

2
2

sdrrGrMsdrrGrM
j

rH
rrrrrrrrrrrr

(10)

We will define the right hand side of Equation 10 as an operator on Ms that produces
H(r). That is:

( )( ) ( )( )s
kk MrH

rrrr
H≡ (11)

where k denotes whether the field is for Region I (k=1) or Region II (k=2).

The Theory of Moment Methods

Using the Equivalence Principle, the fields in Regions I and II of Figure 5 will
remain unchanged if the aperture is replaced by conducting screen coated with an
equivalent magnetic current source as shown in Figure 9.

M = - E x  y
s t

M
s

= E
t

x y

Aperture

Region I

Region II

Beam

y=0

x

z

y

Figure 9.

The magnetic current source in Region I is:

ŷEM ts ×=
rr

(12)

where Et is the tangential electric field that existed in the aperture before it was replaced
with conducting screen. To guarantee continuity of the tangential electric field in the
aperture, the equivalent magnetic current source in Region II is:

ŷEM ts ×−=
rr

(13)

The tangential magnetic field in Region I just above the aperture is given as the sum of the
incident field due to the beam with the aperture replaced by conductor and the magnetic
field due to the equivalent magnetic current source. That is at y=0:

( )ŷEHH t
)1(

t1
)inc(

t
)1(

t ×+=
rrrr

H (14)

It will be assumed that the incident magnetic field can be determined analytically or by
other methods. The tangential field in Region II just below the aperture at y=0 is:
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( )ŷEHH t
)2(

t2
)inc(

t
)2(

t ×−+=
rrrr

H (15)

Continuity of the tangential magnetic field through the aperture requires:

)2(
t

)1(
t HH

rr
= (16)

which results in the following equation:

( ) ( )ŷEŷEHH t
)2(

tt
)1(

t1
)inc(

t2
)inc(

t ×+×=−
rrrrrr

HH (17)

This is the key equation of the moment method. Since H(inc) is known, this equation can
be inverted to determine Et in the aperture. Because Equation 17 is an integral equation, it
is best solved by numerical methods. Let the tangential electric field in the aperture be
given by:

∑∑ ψ+θ=
n

nz
n

nxt )z,x(ẑ)z,x(x̂E
nn

EE
r

(18)

where θn(x,z) and ψn(x,z) are a set of orthogonal functions. Equation. 17 can be turned

into a matrix equation by multiplying it by a set of orthogonal weighting functions φm(x,z)
and integrating over the entire x-z plane. The following matrix elements are defined:

( )( )∫∫ θφ=θφ
z,x

n
)k(

vmn
)k(

vm dxdz)z,x(ẑ)z,x( HH (19)

( )( )∫∫ ψφ=ψφ
z,x

n
)k(

vmn
)k(

vm dxdz)z,x(x̂)z,x( HH (20)

( )∫∫ φ=φ
z,x

i
)inc(

vmi
)inc(

vm dxdz)z,x(H)z,x(H (21)

Equation 17 becomes:

∑ ∑ ∑∑ 









θφ−










ψφ=φ−φ

n n
x

k
n

)k(
xmz

k
n

)k(
xm2

)inc(
xm1

)inc(
xm nn

HH EE HH

(22)

∑ ∑ ∑∑ 









θφ−










ψφ=φ−φ

n n
x

k
n

)k(
zmz

k
n

)k(
zm2

)inc(
zm1

)inc(
zm nn

HH EE HH  

(23)

Equations 22 and 23 form a set of linear equations which can be inverted to find the
electric field coefficients Ezn and Exn. If the electric field expansion functions, φ and ψ,
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are chosen to be as close to the actual solution as possible then only a few terms of the
expansion will be needed and the size of the matrix to be inverted will be minimized.

Resistive Terminations

The above derivation ignored resistive terminations in the aperture. In some
applications, the signal induced on a slot flows out of the slot to a combiner board by
means of microstrip line on the shadow side of the conducting screen as shown in Figure
10. This paper will model the microstrip connection to the slot as a thin film resistor as
shown in Figure 11.
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Figure 10.
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Figure 11.  Note that the resistor does not cover the entire aperture in the y direction.
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Figure 12.
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 Consider a thin film resistor shown in Figure 12 with a conductance/square of g Ω-

1. The conductance for a uniform sheet of electric current flowing in the z direction is:

L

W
gG = (24)

where W is the width and L is the length of the resistor. Now consider portions of the
aperture shown in Figure 5  filled with some of this thin film resistor. Equation 16
becomes:

( )ŷE)z,x(gHH t
)2(

t
)1(

t ×⋅−=−
rrr

(25)

Equation 17 becomes:

( ) ( ) ( )ŷE)z,x(gŷEŷEHH tt
)2(

tt
)1(

t1
)inc(

t2
)inc(

t ×⋅+×+×=−
rrrrrrr

HH (26)

Equations 22 and 23 become:

∑ ∑ ∑∑ 









θφ−










ψφ+ψφ

φ−φ

n n
x

k
n

)k(
xmznm

k
n

)k(
xm

2
)inc(

xm1
)inc(

xm

nn
g

HH

EE HH
(27)

∑ ∑ ∑∑ 









θφ+θφ−










ψφ

=φ−φ

n n
xnm

k
n

)k(
zmz

k
n

)k(
zm

2
)inc(

zm1
)inc(

zm

nn
g

HH

EE HH
(28)

where:

( )∫∫ ψ⋅⋅φ=ψφ
z,x

nmnm dxdz)z,x()z,x(g)z,x(g (29)

( )∫∫ θ⋅⋅φ=θφ
z,x

nmnm dxdz)z,x()z,x(g)z,x(g (30)

Transverse Slot Between Two Waveguides

This section will examine the problem of a transverse coupling slot between two
waveguides as shown in Figures 13 and 14. The beam flows in the upper waveguide and
the output signal flows out of the lower waveguide. Also the lower waveguide could be
the housing for a combiner board network for the slots.

We will confine the slots to lie along the y direction only. Also, the width of the
slot (Wi) will be very small compared to the wavelength of excitation. These restrictions
will allow us to neglect the y component of electric field in the slot. Also, we will consider
the case for an extremely reletavistic beam so that z component of magnetic field in the
slots may also be neglected. These assumptions reduce Equations 27 and 28 to:
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∑ ∑ 









ψφ+ψφ=φ−φ

n
znm

k
n

)k(
xm2

)inc(
xm1

)inc(
xm n

EgHH H (31)
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Figure 13. Side long view of coupled waveguide geometry.
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Figure 14. Head on view of coupled waveguide geometry

In the absence of the coupling slots shown in Figure 14, the fields inside the waveguides
can be expanded as sum of all the waveguide modes.

( )∑ β−++ +=
n

zj
ztn

n
nn

eêêCE
r

(32a)

( )∑ β−− −=
n

zj
ztn

n
nn

eêêCE
r

(32b)

( )∑ β−++ +=
n

zj
ztn

n
nn

eĥĥCH
r

(32c)

( )∑ β−− +−=
n

zj
ztn

n
nn

eĥĥCH
r

(32d)
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Consider a source inside a volume v  surrounded by a surface So in a waveguide as shown
in Figure 15.

z'- ε z'+ εz'

E +E -

J

M

Figure 15. Elemental volume in waveguide containing sources.

For two independent sets of fields and two independent sets of sources, the Lorentz
reciprocity theorem states:

( )

( )∫∫∫

∫∫

•+•−•−•=

•×−×

v

ababbaba

S

abba

dvMHJEMHJE

dSn̂HEHE

o
rrrrrrrr

rrrr

(33)

Let the a field be the field due to the sources and the b field be one of the reverse traveling
waveguide modes.

EEa rr
= HHa rr

= JJa rr
= MMa rr

=
(34)

( ) zj
zt

b m
mm

eêêE β−=
r ( ) zj

zt
b m

mm
eĥĥH β+−=

r
     0Jb =

r
          0Mb =

r

Substituting Equation 34 into Equation 33 and using the facts that the tangential electric
field on the walls of the waveguide are zero and that the waveguide modes are orthogonal,
the mode coefficients of Equation 32 for the positive going field are:

( ) ( )( )∫∫∫ β+ •+−−•−=
v

zj
ztzt

m
m dveMĥĥJêê

P4

1
C m

mmmm

rr
(35)

where:

( )∫∫ •×=

t

mm
S

ttm dSẑĥê
2

1
P (36)
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If the b field is now set equal to one of the positive going waveguide mode, the mode
coeffcients for the negative going field is:

( ) ( )( )∫∫∫ β±± •+−•=
v

zj
ztzt

m
m dveMĥĥJêê

P4

1
C m

mmmm

r
m

r
m (37)

We have already stated that  y component of the electric field in the slot will be neglected.
Also we will separate the y dependence and the z dependence of the electric field in each
slot so that the tangential electric field in all of the slots is written as:

∑ ∑ 









αλ=

i l
l,izislots )x(E)z(ẑE

l,i

r
(38)

Where the I index indicates the slot number and the l index indicates the slot-mode (to be
defined later). This is equivalent to specifyfing the expansion function in Equation 18 to
be:

)z()x()z,x()z,x( il,il,in λα=ψ=ψ (39)

For the time being let λi(z) be equal to the Dirac delta function δ(z-z’). The magnetic
current source due to slot I and slot-mode l in the upper waveguide is:

)'zz()x()y(Ex̂M l,izl,i l,i
−δαδ−=

r
(40)

Using Equations 32, 35 and 37, the y component of the magnetic field is:

∑ −β−−=
n

'zzj
xnzx

n
nl,il,il,i

e)y,x(hcEH (41)

where:

∫ α=
x

l,ix
n

n 'dx)'x()0,'x(h
P4

1
c

nl,i
(42)

Now, integrating over z’:

∑ ∫ −β−λ−=
n 'z

'zzj
ixnzx 'dze)'z()y,x(hcE)z,y,x(H n

ml,il,il,i
(43)

We will use Galerkin’s approach and let the weighting function:

)z()x()z,x()z,x( pr,pr,pm λα=φ=φ (44)

Multiplying Equation 43 by Equation 44 and integrating over y and z, we find:

∑ ∫ ∫ −β−λλ−=ψφ
n z 'z

'zzj
ipnnnl,ixr,p dz'dze)'z()z(ccP4 n

l,ir,p
H (45)

The double integral in Equation 45 will be defined as:
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∫ ∫ −β−λλ=
z 'z

'zzj
ipni dz'dze)'z()z(fW n

p,i
(46)

where Wi is the width of slot i in the z direction. Equation 45 becomes:

∑−=ψφ
n

nnnnil,ixr,p p,il,ir,p
fccPW4H (47)

If the slots are much narrower than a wavelength in the z direction, we can use the step
function for the λ function.

( ) 1zi =λ for
2

W
zz i

i <−

( ) 0zi =λ for
2

W
zz i

i >− (48)

For p�i, Equation 46 becomes:

pin
p,i

zzjpnin
pn e

2

W
Sa

2

W
SaWf

−β−







 β






 β

= (49)

For p=i:





















β







 β

−
=

β
−

2

W
j

2

W
Sae1

Wf
in

in2

W
j

in

in

p,i
(50)

Assume that an infinitely narrow (in the y direction) resistor is placed across slot I. The
conductance density for the resistor is:

( ) )z(xx
R

W
)z,x(g iR

i

i
i i

λ−δ= (51)

Because λi and λp only overlap when i=p, the matrix element due to the resistor is:

( ) ( )
ii Rl,iRr,p

i

p,i

i

l,ir,p
xx

RW

g
αα

δ
=

ψφ
(52)

Relativistic Beam Current In A Waveguide

Because of it’s high energy, a relativistic beam can be thought of as a current
source. A small piece of the beam located at xb,yb, has a current density of the form:

( ) ( ) ( )'zzyyxx
2

i
)z,y,x(J bb

b −δ−δ−δ=
r

(53)

The factor of ½ is results from exploiting the method of images. The y component of
magnetic field in the waveguide can be found using Equations 32, 35-37:
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( )
∑ −β−−=
n

'zzj
x

n

bbzb
x

n
n

n e)y,x(h
P4

y,xê

2

i
)y,x(H (54)

Equation 54 must be multiplied by the z dependence of the beam current density and
integrated:

( )
∑ ∫

∞

∞−

−β−κ−−=
n

'zzj'zj
x

n

bbzbinc
x 'dzee)y,x(h

P4

y,xê

2

i
)z,y,x(H n

n
n (55)

where:

c

ω
=κ (56)

Equation 55 becomes:

( )
∑ κ−

β−κ

β
−=

n

zj
x2

n
2

n

n

bbzbinc
x e)y,x(h

j2

P4

y,xê

2

i
)z,y,x(H

n
n (57)

The matrix element on the left hand side of Equation 31 is found by evaluating Equation
57 at y=0 and multiplying the result by φp,r and integrating:

( )∑
κ−β

β







 κ
−=φ

κ−

n
22

n

n
bbzn

zjp
p

binc
xr,p

j2
y,xêce

2

W
SaW

2

i
H

nr,p
p (58)

Waveguide Mode as the Incident Field

Consider the case where the incident field is a waveguide mode.

zj
0nx

inc
x

0ne)y,x(ĥ)z,y,x(H β−= (59)

Using Equation  44, the left hand side matrix element is:














α













λ=φ ∫∫ β−

x
r,p0nx

z
p

zjinc
xr,p dx)x()0,x(ĥdz)z(eH 0n (60)

Using Equation42 Equation 60 becomes:

p0n
r,p

zjp0n
0n0np

inc
xr,p e

2

W
SacPW4H

β−







 β
=φ (61)

Mode Power

Once Equation 31 is solved, the coupling coefficients for the waveguide modes
shown in Equation 32 can be determined. The magnetic current source for the lower
waveguide of Figures. 14 due to the electric field in the slots is:



4/15/98
3:45 PM

15

∑ ∑ 









αλδ=

i l
zl,ii l,i

E)x()z()y(x̂M
r

(62)

Substituting Equation 62 into Equation 35, the forward and reverse coupling coefficients
are:

∑ ∑ 















 β

= β±±

i l
zi

upper
m

zjim
upper

m l,il,i
im EWce

2

W
SaC m

(63)

∑ ∑ 















 β

±= β±±

i l
zi

lower
m

zjim
lower

m l,il,i
im EWce

2

W
SaC

The power in mode m is given by the Poynting Vector:

( )












•×= ∫∫±

t

mm
S

*
ttm dSẑHERe

2

1 rr
P (64)

Using Equations 32 and 36,  Equation 64 reduces to:

{ }m
2

mm PReC±± =P (65)

Pickup Transfer Impedance

This section will develop a definition of transfer impedance that can be used to
compare the waveguide design to cooling arrays that are built with conventional pickups.
The difference mode power is:

22
b

2d

y

2

i
Z

2

1
P

2

1
putotal 














= ±

∆∆ (66)

where d is the transverse height of the beam pipe and the ½ factor in the front of the right
hand side of Equation 66 is because ib is a peak current ( not rms.) The left hand side of
Equation 66 is just the power flowing out of one of the waveguides. Using Equations 65
and 66, the impedance of the array becomes:

{ }

















=
±

±
∆

2d

y

2

i

PRe2C
Z

b

00
pu

(67)

The sum mode power is:

2
b

2

i
Z

2

1
P

2

1
putotal 






= ±

ΣΣ (68)
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The sum mode impedance of the array becomes:

{ }









=
±

±
Σ

2
i

PRe2C
Z

b

00
pu

(69)

Kicker Transfer Impedance

The definition of the a kicker impedance is given as:

k

2

k Z

q

pc

2

1
P








 ∆

= (70)

where ∆pc is the change of momentum through the kicker (either longitudinal or
transverse), q is the charge of the antiproton, and Pk is the total kicker power. For a
particle travelling in the +z direction.

( )∫
+







 −−==∆

c
L

t

t
o

o

o

dtt,
2

L
ttczFp

rr
(71)

where F(z,t) is the force on the particle and L is the length of the array. Since the time
dependence of the force is ejωt, Equation 71 becomes:

( )∫
−

κ=∆
2
L

2
L

zj dzezFcp
rr

(72)

where dt=dz/c and have defined to=-L/2c. The force on the particle comes from the
electromagnetic wave of the kicker:

( )( )HẑcEqF
rrr

µ×+= (73)

The change in longitudinal momentum becomes:

∫
∞

∞−

κ=
∆

dzeE
q

pc zj
z

z (74)

The change in the transverse momentum becomes:

( )∫
∞

∞−

κη+=
∆

dzeHE
q

pc
zj

xy
y (75)

For a particle travelling in the –z direction:
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∫
∞

∞−

κ−=
∆

dzeE
q

pc zj
z

z (76)

( )∫
∞
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∆

dzeHE
q

pc
zj

xy
y (77)

The integrals in Equations 74-77 can be evaluated by using reciprocity. The reciprocity
law stated in Equation 33 can be rewritten as:

( ) ( )∫∫∫∫∫ •−•=•×−×
v

pkpk

S

pkkp dvJEMHdSn̂HEHE

o

rrrrrrrr
(78)

where p designates the pickup fields and sources, and k designates the kicker fields (there
are no kicker sources.) The geometry that defines the surface So and the volume V is
shown in Figure 16.

Absorber
Pickup Beam

z

xy

Pickup Wave

Region I

Region II

Termination
Pickup Output

Pickup Wave

Kicker WaveKicker Wave

Kicker Input

Kicker Beam

So

Port 1

Port 4

Port 3

Port 2

Figure 16. Waveguide pickup showing surface for reciprocity integral

For a kicker, the fields at the 4 ports are:
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SêE

0

0

α−=

α=
r

r

0H

0E
k
4

k
4

=

=
r

r

0f

0f

tp
p
1

tp
p
1

ĥH
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(79)

where Eb and Hb are the beam fields in an unperturbed beam pipe and S1,1 and S3,1 are the
scattering parameters of the kicker. It was assumed that the absorber kills the pickup and
kicker fields at ports 2 and 4 and that only the fundamental mode propagates in ports 1
and 3. The left hand side of the reciprocity integral of Equation 78 is zero for ports 2, 3,
and 4. The integral is non-zero only at port 1. Equation 78 becomes:

( )∫∫∫ •−•=αα
v

pkpk
pk0 dvMHJEP4

f

rrrr
(80)
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If the beam current density is chosen to be:

( ) ( ) zj
bb

bp eyyxx
2

i
ẑJ κ−−δ−δ=

r
(81)

which is the description of a beam travelling in the +z direction. Equation 80 becomes:

( )∫
∞

∞−

κ−=αα dzey,xE
2

i
P4 zj

bb
k
z

b
pk0 f

(82)

Using Equations 70 and 76,

k
b

pk0 PZ2
2

i
P4

kf Σ=αα (83)

Since the total kicker power is equal to the sum of the power in the upper and lower
waveguides of Figure 2:

0
2

kk PP
2

1
α= (84)

The pickup coefficient in Equation 83 can be found from Equation 69. Equation 83
becomes:

kp
ZZ2 ΣΣ = (85)

For the transverse case, we need two transverse current sources:

( ) ( ) zj
bb

bp eyyxx
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i
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(86)

( ) ( ) zj
bb

bp eyyxx
2

i
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r
(87)

Also define:

pf
Z
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2
b

0
2

p ∆





=α (88)

Note that the impedance in Equation 80 is not the same impedance as defined in Equation
66. Substituting Equations 84, 86-88 into Equation 80 and using the definition of the
kicker impedance found in Equations 70 and 77:

kp
ZZ

~
2 ∆∆ = (89)

To solve for the vector element on the left hand side of Equation 31, the same procedure
that was developed in Equations 53-58 is used. First, the Green’s function for the
following sources is found:

( ) ( ) ( )'zzyyxx
2

i
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r

(90)
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( ) ( ) ( )'zzyyxx
2

i
x̂M bb

bp −δ−δ−δη=
r

(91)

Using Equation 37:
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J
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P4

1
C β±± η±= (93)

where the J,M superscripts indicate whether the coefficient is for the electric or magnetic
current source, respectively. The plus/minus sign in the superscript indicates whether the
solution is for z>z’ and z<z’, respectively. The transverse magnetic field in a waveguide is
proportional to the transverse electric field:

mm y
wave
mx êZĥ −= (94)

Equation 93 becomes:
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The magnetic fields for the point current sources are:
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The magnetic field due to the extended electric beam source of Equation 86 is found by
integrating Equation 96:
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(99)

Using the radiation condition, the integrals vanish at infinity. Equation 99 becomes:
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The magnetic field due to the magnetic current is:
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The total magnetic field is the sum of Equations 100 and 101:
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The matrix element on the left hand side of Equation 31 is found by evaluating Equation
102 at y=0, summing the result over all the m modes, multiplying this result by φp,r and
integrating over x and z:
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Summary of Equations

The following matrix equation is to be solved for the electric field in the slots.

∑ ∑ 









ψφ+ψφ=φ

n
znm

k
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)k(
xm

)inc(
xm n

EgH H (104)

where ψn (and φm) are expansion functions for the field in the slot:

)z()x()z,x()z,x( il,il,in λα=ψ=ψ
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The right hand side matrix elements are:
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(106)
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where:
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∫ α=
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For a difference mode pickup, a sum mode pickup, and a sum mode kicker, the vector
elements on the left hand side of Equation 104 are:
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For a difference mode kicker, the vector elements are:
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Once the matrix equation Equation 104 is inverted for the electric field in the slots, the
amplitude of the waveguide modes flowing out of the structure can be calculated. The
mode coefficients for the output (lower) waveguide is:

∑ ∑ 
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i l
zi

lower
m

zjim
lower
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where the top sign is for the signal traveling in the + z direction (for a beam traveling in
the +z direction) and the bottom sign is for the signal travelling in the –z direction. Note
that this formula is only valid for the regions upstream and downstream of the slots (not
inside the slot region.)

The sum mode pickup impedance is defined as:

putotalpu
Z
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i
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2
b

ΣΣ 





= (115)

where ib is a peak current (not rms.) The sum mode pickup impedance is given from the
power travelling in the fundamental waveguide mode:
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For the difference mode pickup, the impedance is defined as:
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which results in:
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A kicker impedance is defined as:
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= (119)

From reciprocity, the sum mode kicker impedance is:

kp
ZZ2 ΣΣ = (120)

where the signal and beam directions shown in Figure 16 is followed. For the difference
mode kicker, the electric field in the slots and the hence the mode coefficients is calculated
using the vector described by Equation 113. The kicker impedance is becomes
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(121)

Waveguide Modes For A Rectangular Waveguide

We will assume an electric vector potential of the form:

zj
x

n,m
n,m

e)y,x(Fx̂F
β−=

r
(122)

Equations 5 and 7 become:

0)y,x(ê x = (123a)

n,mxn,my cFj)y,x(ê ηβ= (123b)
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c)y,x(ê n,mx

z ∂

∂
η= (123c)

x2

2
2

2x F
x

j
)y,x(ĥ 
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The boundary conditions require that:

0Ey =
r

 at x = ±a/2 (124a)

0Ez =
r

 at y = 0, b and at x = ±a/2 (124b)

For simplicity, we will consider the beam centered at x=0. This will require Fx to be even
in x. The electric vector potential that satisfies these equations and constraints is:
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Equation 67 becomes:
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ĥ oz n,m

(127f)

Equation 36 becomes:
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where dn=1 for n=0 and dn =2 for n�0. The denominator of Equation 128 can be
considered the power impedance of the waveguide.
The wave impedance is:
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so that the power impedance is:

wave
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d2Z = (130)

Because we are considering only even modes in x and that the z component of electric
field must vanish at the ends of the slot (x = ±Li/2), a reasonable expansion function for
α(x) is:
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Equation 42 becomes
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(133)

Calculation of the electric field along the length of the waveguides.

We can assume that each one of the slots in Figure 13 to be a magnetic current
source. The total field in the waveguide will be a sum of the fields resulting from each slot.
For a single slot and slot mode, the magnetic current source is:

)z()y()x(Ex̂M il,izl,i l,i
λδα=

r
(134)

Using Equations 37, the waveguide mode coupling coefficients are:
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If the observation point is at the center of the waveguide (x=0) then Equation 135
becomes:
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Equation 136 becomes:
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The electric field is found from Equation 32:
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For:
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The electric field is:
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The electric field for the forward and reverse waves at x=0 is:



4/15/98
3:45 PM

26

( )
( )



















β
−

+=
−β−

β
−

+ ∑
in

zzj2
W

j

n
zynzil,i Wj

ee1
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The total electric field for the region enclosed in the slot is the sum of Equations 143 and
144:
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In summary:
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For: 





 +<<






 −

2

W
zz

2

W
z i

i
i

i

( ) ( )( )∑ −β
β

•=•

β
−

n
in

in

2
W

j

ynzil,i zzsin

2

W
e
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